
Vol.:(0123456789)

SN Computer Science           (2024) 5:462  
https://doi.org/10.1007/s42979-024-02789-2

SN Computer Science

ORIGINAL RESEARCH

The Data Analytics Framework for XDMoD

Aaron Weeden1  · Joseph P. White1 · Robert L. DeLeon1 · Ryan Rathsam1 · Nikolay A. Simakov1 · Conner Saeli1 · 
Thomas R. Furlani1

Received: 1 October 2023 / Accepted: 12 March 2024 
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024

Abstract
Open XDMoD is an established, web-based software tool that facilitates monitoring of cyberinfrastructure (CI); including 
metrics on compute job performance, cloud usage, storage, science gateways, users, institutions, allocations, awards, and 
more. Centers can install Open XDMoD and populate it with their local CI information. Additionally, information is acquired 
daily for CI systems allocated by the National Science Foundation (NSF) Advanced Cyberinfrastructure Coordination Eco-
system: Services & Support (ACCESS) program and placed in an extensive historical data warehouse as part of an ACCESS-
hosted version of Open XDMoD. A user portal displays customizable charts that can be filtered and drilled down to provide 
a wide variety of reports quickly and easily. However, there will always be desired analyses for which the data are available 
but which cannot be performed because of limitations in the user interface. To remedy this situation, we have developed a 
Data Analytics Framework for XDMoD that provides an application programming interface (API) to the Open XDMoD data 
warehouse; enabling CI studies, user studies, return on investment studies, and any other studies that can utilize the data. 
The Data Analytics Framework provides data scientists the capability to access data from Open XDMoD and perform any 
desired analyses using analytics tools of their choice. The framework is available both for the ACCESS-hosted version of 
Open XDMoD for broad-ranging studies of national CI and for centers’ installations of Open XDMoD for studies of local CI.

Keywords Open XDMoD · Metrics · Cyberinfrastructure · Jupyter notebooks

Introduction

Science and Engineering (S &E) is a major component 
of the US budget constituting 3.4% of the US GDP in 
2021 [1]. The National Science Foundation (NSF) invests 
in a national cyberinfrastructure (CI) ecosystem that ena-
bles a broad and diverse set of requirements, users, and 
usage modes from all areas of S &E research and educa-
tion. One major component of this are the CI resources 
allocated by the Advanced Cyberinfrastructure Coordi-
nation Ecosystem: Services & Support (ACCESS) pro-
gram [2]. Comprehensive instrumentation, monitoring, 
measurement, and reporting across all layers of the sys-
tems and services making up the ACCESS ecosystem are 
essential to providing the situational awareness necessary 
for achieving increased levels of efficiency, understand-
ing, autonomous operations, robustness, and performance. 
The ACCESS Monitoring & Measurement Services 
(MMS) team serves in the important role of monitoring 
the ACCESS CI to ensure optimal performance, robust-
ness, and usage (including compute, cloud, storage, 

This article is part of the topical collection “Metrics for Measuring 
Success of CyberInfrastructure (CI) Projects” guest edited by Ritu 
Arora and Amit Majumdar.

 * Aaron Weeden 
 aaronwee@buffalo.edu

 Joseph P. White 
 jpwhite4@buffalo.edu

 Robert L. DeLeon 
 rldeleon@buffalo.edu

 Ryan Rathsam 
 ryanrath@buffalo.edu

 Nikolay A. Simakov 
 nikolays@buffalo.edu

 Conner Saeli 
 connersa@buffalo.edu

 Thomas R. Furlani 
 furlani@buffalo.edu

1 Center for Computational Research, University at Buffalo, 
Buffalo, NY 14203, USA

http://orcid.org/0000-0002-9166-1941
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02789-2&domain=pdf


 SN Computer Science           (2024) 5:462   462  Page 2 of 14

SN Computer Science

networking, software/data services, etc.). ACCESS MMS 
also provides services to several other related NSF-funded 
programs such as Campus Cyberinfrastructure (CC*) [3] 
and Cyberinfrastructure for Sustained Scientific Innova-
tion (CSSI) [4].

ACCESS MMS is an extension of the successful Technol-
ogy Auditing Service (TAS) and XD Metrics Service (XMS) 
programs that monitored the resources allocated by the NSF 
eXtreme Science and Engineering Discovery Environment 
(XSEDE) [5] and tracked historical usage data dating back 
as far as the NSF TeraGrid [6] program. The main utility 
ACCESS MMS uses for ingesting and reporting data is Open 
XDMoD [7], which provides a web-based portal with capa-
bilities for data exploration, visualization, and export. Open 
XDMoD’s graphical user interface allows users to make 
charts rapidly and easily, to export data, and to construct 
reports on various aspects of CI usage and functionality. 
Open XDMoD is role-based, allowing the various CI stake-
holders access to the data of most use to them. Researchers 
can see data from their own work, principal investigators 
(PIs) can see the data pertaining to their group, center direc-
tors and support staff can see the data across their center, and 
program officers can see all of the data.

Figure 1 shows a screenshot of the Open XDMoD portal 
illustrating some of the user interface features. The interface 
is tab-based with different data analysis and visualization 
components available in different tabs. The screenshot shows 
the Metric Explorer tab that allows easy generation of a wide 
variety of interactive charts. It has detailed, embedded data 
descriptions and an easy-to-navigate, tree-based component 
for exploring the various data available in the Open XDMoD 
data warehouse.

The Open XDMoD data warehouse is a set of databases 
that employs a dimensional starflake model [8] for storage 
of CI data. Data are organized into fact tables, dimension 
tables, and aggregate tables. The data are obtained via data 
processing pipelines that involve parsing log files (e.g., 
Slurm scheduler logs, web server logs, performance data 
archives) or relational databases such as PostgreSQL, nor-
malizing the data, and loading them into fact and dimen-
sion tables. Open XDMoD’s data warehouse architecture is 
optimized for fast, interactive data retrieval via the portal. 
To achieve this, the fact data are aggregated across different 
time ranges (day, month, quarter and year) into aggregate 
tables. Data are organized into realms (e.g., Jobs, Cloud, 
Storage), with each realm having its own fact and aggregate 

Fig. 1  Screenshot of the Open XDMoD portal showing the Metric 
Explorer tab that supports interactive charts. The Metric Explorer 
tab has a tree-based catalog of the available data from the data ware-
house; an interactive chart panel that supports a wide range of chart 

types; a toolbar to configure data selection and filtering; and online, 
context-specific help text. This screenshot shows the ACCESS-hosted 
version of Open XDMoD that contains data from ACCESS-allocated 
resources



SN Computer Science           (2024) 5:462  Page 3 of 14   462 

SN Computer Science

tables, and dimension tables are shared across realms or indi-
vidual to each realm. For example, the Jobs realm contains 
data about compute jobs that are run by batch job schedul-
ers typically used in high-performance computing resources. 
The fact table for the Jobs realm contains data such as com-
pute job submit, start, and finish times; how many nodes, 
CPU processors, GPUs, and memory were used; and to 
which queue the job was submitted. Fact tables in the data 
warehouse include foreign keys to rows in the dimension 
tables; this allows each row to be filtered or grouped by 
the dimensions. For example, in the fact tables of the Jobs 
realm, each job is keyed to a person who ran the job, a field 
of science for the project that submitted the job, a resource 
on which the job ran, etc. The dimension tables store infor-
mation about people, organizations, resources, fields of sci-
ence, etc. For example, the resource dimension tables store 
the name, location, and specifications of compute resources. 
The metrics and dimensions available in each realm of Open 
XDMoD are listed in Appendices A, B, and C.

Motivation

Open XDMoD is a well-established tool for CI manage-
ment that has been developed and supported for more than 
a decade. However, it has certain constraints and limita-
tions that must be worked around to support many types 
of analysis and reporting. In this section we highlight some 
of the desired types of analysis and the limitations of Open 
XDMoD; these can be overcome via the development of an 
application programming interface (API), which we discuss 
in Sect. 3.

Open XDMoD has been successfully used in multiple 
workload analyses of CI resources and programs, includ-
ing NCSA Blue Waters [9] and the NSF Innovative HPC 
program [10]. It has also been used in other studies, such 
as analysis of compute node sharing on HPC clusters [11], 
power consumption in HPC [12], and financial return on 
investment for IT infrastructure [13]. The workload analy-
ses  [9] and  [10] involved data visualizations in the Open 
XDMoD portal, data exported from Open XDMoD, data 
from sources outside of Open XDMoD, and subsequent anal-
ysis with other tools (R [14] and Python with NumPy [15] 
libraries). Some of the workload analyses relied on data 
obtained via direct SQL queries into the Open XDMoD data 
warehouse because the data were not available in the portal. 
Direct queries to the data warehouse circumvent the Open 
XDMoD portal access controls, so they should not be used 
as general purpose mechanisms for data retrieval.

The Open XDMoD architecture supports extensive 
customization to add new data realms, new dimensions to 
existing realms, and new visualization capabilities to the 
portal. For example, the Open XDMoD instance that was 

used to analyze NCSA Blue Waters had customizations to 
add dimensions for the compute node type and better match-
ing of job size categories to the distribution of job sizes. 
As another example, the ACCESS-hosted version of Open 
XDMoD has many customizations including an extra Cus-
tom Query tab that provides a limited number of hardcoded 
queries so that NSF program officers and center manage-
ment staff can view information not otherwise available, 
such as funding amounts associated with allocated projects. 
However, this type of customization cannot be performed by 
end users of the portal and requires knowledge of the Open 
XDMoD software and time-consuming database reaggrega-
tion steps that must be performed by an administrator.

Open XDMoD has a report generator that allows user-
configurable reports to be generated and automatically 
emailed periodically. The report contents can include any 
chart that is available from the Metric Explorer tab in the 
portal, and the reports can be generated in PDF or Microsoft 
Word formats. The reports are primarily chart-based; there 
is no support for tabular data display (which is supported in 
the Usage tab in the portal). Chart titles, subtitles, and axis 
labels are all configurable, but there is no support for figure 
captions, footnotes, or blocks of text within the reports. To 
add any other non-chart content, reports must be exported in 
Microsoft Word format and then manually edited.

Open XDMoD is widely utilized in academia, industry, 
and government with over 400 known installations world-
wide. The ACCESS MMS team solicits feedback about 
Open XDMoD from stakeholders via multiple mecha-
nisms, such as an online roadmap to which anyone can post 
requests, regular XDMoD Users Group meetings, support 
tickets, and conversations at international conferences such 
as Practice and Experience in Advanced Research Comput-
ing (PEARC) and SC. Common requests include adding 
more chart types (e.g., scatter plots and histograms) and 
adding new data realms so that Open XDMoD can be used 
to analyze data from other sources.

The ACCESS MMS team is developing a CI simulator 
that will be used to predict the response of the CI ecosystem 
to proposed new systems or changes in existing systems, 
enabling efficient deployment and use. This will comprise 
multiple mathematical models including machine learning 
models that use the data in the ACCESS-hosted version of 
Open XDMoD. This task will require a mechanism to pro-
grammatically obtain data from the data warehouse and load 
them into models written in R and Python.

One other constraint of the Open XDMoD data ware-
house is that the dimensions are determined at aggregation 
time. For example, the SUPREMM (job-level performance) 
realm has a dimension for the overall CPU usage for each 
compute job. This allows easy creation of histogram plots 
that show resource utilization binned by the percent CPU 
usage of the compute jobs. However, the bin sizes are fixed 



 SN Computer Science           (2024) 5:462   462  Page 4 of 14

SN Computer Science

at 10% increments from 0 to 100 and cannot be changed by 
end users in the portal, so histograms with different bin sizes 
or density plots cannot be created in Open XDMoD. Instead, 
the job-level data must be exported using the Data Export 
tab and then processed using other software.

Given our experience using Open XDMoD for data 
analysis and requirements from the community, we decided 
that creating a programmatic API to the data in the Open 
XDMoD data warehouse would allow us to address the 
issues described above. A programmatic API would allow 
us to make use of existing, external data analysis and visu-
alization tools rather than trying to duplicate them within 
the Open XDMoD portal.

Design and Implementation

In this section we discuss our design goals for the Data Ana-
lytics Framework, which is a new programmatic API for 
Open XDMoD, and how we implemented its initial version.

Design Goals

The high-level goals for the design of the Data Analytics 
Framework were (1) to provide a programmatic API to the 
data in Open XDMoD to facilitate data analysis that could 
not otherwise be done in the portal, (2) to further broaden 
the utility of Open XDMoD for CI analysis, and 3) to con-
tribute to the sustainability of the project.

We did a brief evaluation of the tools that were in com-
mon use for data analysis including programming lan-
guages such as Python, R [14], Julia [16] and visual tools/
environments such as RStudio [17], Jupyter [18], and MAT-
LAB [19]. Our team had the most prior experience with 
using Python and R for developing machine learning models 
and data processing for workload analysis, so we opted to 
support APIs for both Python and R.

To derisk the feasibility of a Python API, we developed a 
basic proof of concept comprising some Python code within 
a Jupyter notebook [18]. The Python code made requests to 
existing HTTP endpoints that support the Open XDMoD 
portal, retrieved comma separated values (CSV), serialized 
them into Python data structures, and displayed them in plots 
embedded in the notebook.

The experience gained from developing the proof-of-
concept prototype, combined with the high-level require-
ments from the project team and features requested from 
Open XDMoD users, led us to identify the following set of 
main goals:

• Extend and support a documented, stable, versioned 
HTTP API to the XDMoD data warehouse.

• Support open-source Python and R libraries that use the 
HTTP API to provide programmatic access to the data 
in Open XDMoD.

• Support Jupyter notebooks as a framework for using the 
Python and R libraries.

• Ensure that training materials, example notebooks, and 
API documentation are available, supported, and open to 
community contributions.

Extending the existing HTTP API to Open XDMoD would 
ensure that the existing role-based access controls in Open 
XDMoD were honoured and could not be circumvented 
by API calls. We did not set a responsiveness goal for data 
access endpoints since they could be used for transfers of 
large amounts of data, but we did want to monitor the impact 
of any new data access endpoints and how they could impact 
the existing portal load times.

We realized that comprehensive documentation and train-
ing materials would have to form a core part of the design 
rather than an afterthought at the end of the development 
process. We also realized that Jupyter notebooks, which have 
export capabilities and existing open-source data visualiza-
tion libraries, could be used to significantly improve Open 
XDMoD’s reporting capabilities. We set a goal of having the 
charts in the notebooks match the look and feel of the Open 
XDMoD portal where possible (e.g., match chart dataset 
colors, font size and face, layout, etc.).

The high-level design schematic of the Data Analytics 
Framework is shown in Fig. 2. To create the Data Analyt-
ics Framework, we developed Python and R code, example 
Jupyter notebooks, and modifications to the Open XDMoD 
portal code. During this process, we utilized version control 

Fig. 2  High level schematic of the Data Analytics Framework for 
XDMoD. On top of the data warehouse sits an HTTP application pro-
gramming interface (API). On top of the HTTP API sit Python and 
R APIs, on top of which sits a Jupyter web interface. Data scientists 
access the Python and R APIs either directly or through the Jupy-
ter web interface. The Open XDMoD portal and other web services 
access the HTTP API, and automated science and engineering (S &E) 
workflows access the Python and R APIs



SN Computer Science           (2024) 5:462  Page 5 of 14   462 

SN Computer Science

and automated testing and wrote supporting documentation 
for end users, system administrators, and developers. We 
detail these development activities in the following sections.

Python Development

Due to our team having relatively more experience with 
Python over R, we chose to develop the Python language 
API first and then begin work on the R version once the 
initial Python version was complete. In this section we list 
the details of the Python API. The R API is discussed later 
in Sect. 5.2.3.

The data that are obtained from the Open XDMoD data 
warehouse naturally fit into data frames, which are two-
dimensional tabular data structures commonly used in data 
science. The Pandas [20] Python library is a widely used 
library for data science and provides an API for storing 
and manipulating data in data frames. It also has methods 
for exporting data into other formats, which allows users 
to manipulate the data outside of Pandas or even Python. 
Thus, we decided that the Python API should provide data 
in Pandas data frames to support flexibility and extensibility.

To obtain data from the Open XDMoD data warehouse, 
we decided the Python API would make HTTP requests to 
endpoints on the web server that runs the Open XDMoD 
portal. The portal’s user interface had already been built 
around HTTP endpoints; each time a user generates a plot 
or views a listing of data on the portal, the portal makes 
HTTP requests to endpoints behind the scenes. The new 
Python API was designed to utilize the same endpoints plus 
a few additional ones needed for retrieval of raw fact data. 
We wrote the code for making HTTP requests on top of the 
Requests [21] Python library.

We designed the Python API to replicate certain function-
ality of the Open XDMoD portal. For example, in the Metric 
Explorer tab in the portal, the user is able to obtain specified 
metrics over a specified duration from specified realms, pos-
sibly grouped and/or filtered by specified dimensions, either 
as timeseries data aggregated by a specified aggregation unit 
(day, month, quarter, or year) or aggregated across the entire 
duration. To replicate this functionality in the Python API, 
we created a method called get_data() that has param-
eters for metric, duration, realm, dimension, fil-
ters, dataset_type, and aggregation_unit. This 
method allows the same data to be obtained that are used to 
make the charts in the Metric Explorer. An example of the 
get_data() method is shown below; in this example, data 
are retrieved for the number of active users each day over 
a four-month time period who had a compute job finish, 
grouped by field of science. The resulting data frame con-
tains a column for each field of science and a row for each 
day, and the cells contain the number of active users in that 
field of science on that day.

The data from the get_data() method are retrieved 
from the aggregate tables of the Open XDMoD data ware-
house. The aggregate tables contain summarized statistics 
aggreated over different time periods. The use of aggregate 
tables gives the Open XDMoD portal fast query times, 
but it has the disadvantage of only being able to support 
predefined queries on the data. Open XDMoD also sup-
ports access to the individual records in the fact tables 
(known as the raw data), via the Data Export tab. When 
this tab was designed, there was concern that long running 
SQL queries would impact the responsiveness of the por-
tal; thus, the tab was designed to service export requests 
in batch mode run nightly, meaning users usually need to 
wait to download data after requesting it. For the Python 
API, we decided to make it possible to obtain the same 
data programmatically and in real time through a method 
called get_raw_data(). This method takes dura-
tion and realm parameters to specify which data to 
retrieve. Specific fields (columns) of data can be requested 
via a fields parameter, and data can be limited to cer-
tain values using the filters parameter. Because the fact 
tables have many more rows of data than the aggregate 
tables, requests for raw data take a noticeablely longer 
time, so we added a parameter to get_raw_data() 
called show_progress that specifies whether to peri-
odically print how many rows have been obtained so far. 
An example of the get_raw_data() method is shown 
below, obtaining three days’ worth of raw data about com-
pute jobs, specifically the wall time elapsed and mem-
ory used by each finished job for projects in the field of 
Chemical Engineering. The resulting data frame contains 
a column for wall time, a column for memory used, and a 
row for each job.



 SN Computer Science           (2024) 5:462   462  Page 6 of 14

SN Computer Science

We wanted the initial version of the API to be as simple 
as possible, using a minimal set of methods and parameters 
needed to specify the data to obtain from the data warehouse. 
Using just the get_data() and get_raw_data() meth-
ods, the user is able to obtain any of the data from the aggre-
gate and fact tables in any of the realms that the access con-
trols allow them to view. In order for the API user to obtain 
lists of the options available for the various parameters of 
these two methods, we also provided a set of methods named 
describe_realms(), describe_raw_realms(), 
describe_metrics(), describe_dimensions(), 
d e s c r i b e _ r a w _ f i e l d s ( ) , 
get_filter_values(), get_durations(), and 
get_aggregation_units(). These methods return 
data frames containing IDs, names, and/or descriptions of 
the various realms, metrics, dimensions, fields, etc.

We wanted the Python API to be easily installed via com-
mon mechanisms for installing Python packages. Thus, we 
created a project called xdmod-data on the Python Pack-
age Index (PyPI) [22] so that users could install it using the 
command pip install xdmod-data. We numbered 
the initial version 1.0.0 with the intent that the version num-
bering would follow Semantic Versioning [23].

Jupyter Notebook Development

In order to provide examples showing how to use the Python 
API, we created a set of Jupyter notebooks. Jupyter note-
books are interactive documents that can be run in web 
browsers and which contain a mix of documentation and 
code that can be run in real time. The notebooks can func-
tion like an interactive textbook by providing explanations of 
code next to the code itself, allowing the user to run exam-
ples and see results without needing to switch to another 
application or runtime environment. Jupyter notebooks 
can also be exported as PDF or interactive HTML docu-
ments that can be shared or run offline. Jupyter supports a 
wide range of languages; primarily Julia [16], Python, and 
R [14] (the name Jupyter being a portmanteau of these three 

language names), which are all popular languages used for 
data science and machine learning.

We decided to develop an initial set of three Jupyter 
notebooks to demonstrate use of the Data Analytics Frame-
work. The first example notebook is meant both to demon-
strate how to make charts like those available in the Open 
XDMoD portal and to enhance the analysis and charting 
beyond what is available in the portal. The second notebook 
demonstrates the new functionality for retrieving raw data, 
and the third notebook shows an example of using machine 
learning to analyze raw data. In all three notebooks, we 
included a code cell that installs or upgrades the xdmod-
data Python package; in this way, we could ensure that 
the same Python environment was used to install the pack-
age and run the example code in the notebook. We also 
included code cells that create a file for storing the user’s 
API token (used for authentication and discussed further 
in Sect. 3.4.1) and that read the contents of the file into the 
environment, to encourage keeping the API token secure 
and separate from the notebook, since the notebooks are 
encouraged to be shared, while the token should be kept 
secure. The notebooks also contain Markdown tables that 
show the data from the methods describe_realms(), 
describe_metrics(), etc., so that each of the methods 
of the API can be documented.

We decided that the example notebooks would use the 
Plotly [24] Python library to make charts, which is consist-
ent with a concurrent project of the Open XDMoD team 
to convert the existing portal charts from rendering with 
the HighCharts [25] JavaScript library to the Plotly library. 
We created a Python module within the framework called 
themes for setting the style of the Plotly charts to use the 
same colors and fonts as those in the portal. We included 
charts in the notebooks that could be made through the por-
tal and charts that could not (e.g., a box and whiskers plot).

The notebooks are meant to be extended and adapted, 
and users are able to use plotting libraries besides Plotly. 
Because the data are available in Pandas data frames, users 
can use any Python plotting library they prefer for charting 
the data, and users can also export the data for use in other 
programming languages or analysis environments.

Open XDMoD Portal Development

The Open XDMoD portal backend consists of PHP source 
code, MariaDB databases, and configuration files in INI 
and JSON formats. The frontend user interface is coded in 
HTML, CSS, and JavaScript. User interactions on the portal 
cause HTTP requests to be made to PHP endpoints in the 
backend that interact with the data warehouse using Mari-
aDB. For the Data Analytics Framework, we made some 
changes to the backend and frontend to support program-
matic access to the HTTP endpoints via the new Python 



SN Computer Science           (2024) 5:462  Page 7 of 14   462 

SN Computer Science

API. We also documented the HTTP endpoints using the 
OpenAPI specification [26].

API Token Authentication

The Open XDMoD HTTP endpoints use session-based 
authentication via cookies, which are obtained when the user 
logs in to the portal with a username and password. For con-
venient use of the Data Analytics Framework, we decided 
to add an API token authentication mechanism that would 
allow read-only access restricted only to certain endpoints 
and operations, namely only those endpoints needed for the 
operation of the Python API (e.g., obtaining aggregate data; 
lists of possible filter values; or descriptions of realms, met-
rics, and dimensions).

Users create API tokens for themselves through the por-
tal, and once they have a token, they can provide it to the 
API as an environment variable. For simplicity, we decided 
that each user would have a single API token at a time. Each 
token is given an expiration date, defaulting to six months, 
and configurable by system administrators of the portal.

To enable the creation, reading, and deletion of API 
tokens, we added a new table to the data warehouse, a new 
interface component to the Open XDMoD portal, and a 
new HTTP endpoint. The interface component on the por-
tal sends requests to the HTTP endpoint, and the HTTP 
endpoint makes the relevant database queries and sends 
responses back to the user interface, which displays helpful 
messages to the user.

New HTTP Endpoints for Raw Data

In addition to creating the new HTTP endpoint for manipu-
lating API tokens and modifying existing endpoints to ena-
ble API token authentication, we also created two new end-
points for obtaining raw data. As mentioned earlier, raw data 
could previously only be obtained as a batch process that 
ran once per day. In order to support real-time requests for 
raw data that also include filtering, we created a new HTTP 
endpoint called raw-data. The number of rows that can be 
obtained in a single request to this endpoint is defined to be 
10,000 by default and is configurable by the system admin-
istrator in an INI file. In order for this maximum number 
to be obtained programmatically, we also created an HTTP 
endpoint called raw-data/limit that simply returns the 
number.

For the Python API to obtain raw data, it first makes a 
request to the raw-data/limit endpoint to obtain the 
configured maximum number. Then, it makes a request to 
the raw-data endpoint, specifying the realm, date range, 
and any specific fields and/or filters. Next, it checks if the 
number of rows it received is the configured maximum num-
ber. If it is, it makes the same request again, specifying an 

offset equal to the number of rows it has received so far. If 
it isn’t, it makes no further requests. By making requests 
in this way, the API is able to iteratively receive all the 
data, with opportunities along the way to give feedback 
to the user on the number of rows obtained so far (if the 
show_progress parameter is set). This splitting up of 
each request into multiple smaller requests reduces the size 
of queries that are made to the data warehouse, reducing 
the risk of Denial of Service. By providing an offset param-
eter for each of the smaller requests, the state of the overall 
request does not need to be maintained by the server.

Version Control, Testing, and Documentation

To track changes made to the Open XDMoD source code, we 
utilized the existing xdmod GitHub repository [27]. We cre-
ated new GitHub repositories to track changes to the Python 
API source code [28] and example Jupyter notebooks [29]. 
Using GitHub repositories allows us to be trasparent about 
our development and facilitate contributions from the com-
munity. These repositories include automated continuous 
integration testing through the CircleCI software [30], help-
ing us better identify bugs as new changes are integrated 
into the code. We developed automated tests of the Python 
code using the pytest library [31], and we extended existing 
integration tests of the PHP portal code using the PHPUnit 
library [32]. Our integration tests ran on the CentOS 7 and 
Rocky 8 Linux operating systems, which are the two oper-
ating systems we officially support in version 10.5 of Open 
XDMoD.

In addition to the documentation in the Jupyter note-
books, we also developed documentation in the Open 
XDMoD portal’s user guide to explain how users can gener-
ate API tokens, and on the Open XDMoD website to inform 
system administrators how to configure their installations of 
Open XDMoD to use the Data Analytics Framework.

Version 1.0.0 of the Framework

We completed and released version 1.0.0 of the Data Ana-
lytics Framework for XDMoD on July 21, 2023, to the 
xdmod-data GitHub repository [28] and the Python Pack-
age Index (PyPI) [22]. We upgraded the ACCESS-hosted 
version of Open XDMoD to a new 10.5 version on July 
19, 2023. Users with ACCESS accounts can log in to the 
ACCESS XDMoD portal, generate an API token, and use 
it to run the Python API to obtain data from the ACCESS-
hosted version of Open XDMoD. We released version 10.5 
of Open XDMoD on September 11, 2023, which allows 
portal users of centers with Open XDMoD installations to 
generate API tokens and use the Python API to obtain data 
from that center’s Open XDMoD data warehouse.



 SN Computer Science           (2024) 5:462   462  Page 8 of 14

SN Computer Science

The example Jupyter notebooks are available for down-
load from the xdmod-notebooks  GitHub reposi-
tory [29]. This repository contains instructions for install-
ing either the Anaconda [33] or Docker [34] software to 
run the notebooks. Each notebook contains a code cell 
that installs the xdmod-data Python package, or the 
package can be installed directly from PyPI using the 
command pip install xdmod-data.

We welcome contributions from the community to the 
GitHub repositories in the form of GitHub Pull Requests, 
in which contributors make changes and submit a request 
for review by our team.

Case Studies

In this section we detail a couple of example case studies 
demonstrating use of the Data Analytics Framework.

CI Usage Reporting

Our team has begun using the Data Analytics Framework 
to report on ACCESS usage to the NSF. For example, 
we created a Jupyter notebook in which we reported the 
usage of ACCESS-allocated compute resources by US 
state over a nine month period. We used the Python API 
to obtain three metrics from the ACCESS-hosted version 
of Open XDMoD: 1) total number of ACCESS Credits 
charged, 2) number of active users, and 3) number of 
active institutions. The data were obtained from the Jobs 
realm, grouped by the dimension User Institution State, 
and filtered only to include results where the dimension 
User Institution Country is the United States. We also 
joined in data from other sources; for example, whether 
the state is an EPSCoR [35] state, and the state’s popula-
tion (used to calculate the number of users of ACCESS-
allocated resources per 10,000 residents). We output the 
data frame as a Markdown table and created a choropleth 
plot using Plotly. A screenshot of the notebook is shown 
in Fig. 3. This notebook, along with other reporting on the 
usage of ACCESS-allocated resources, is planned to be 

Fig. 3  Screenshot of an analytic notebook containing a choropleth map that shows the number of different US institutions with ACCESS users 
during the report period 2022-12-01 to 2023-08-27



SN Computer Science           (2024) 5:462  Page 9 of 14   462 

SN Computer Science

made available to the public in the ACCESS Knowledge 
Base [36].

Machine Learning Classification

As another example of the type of analysis one can do with 
the Data Analytics Framework, and to provide a template 
for how to use it, we created a Jupyter notebook for a 
case study of a random forest classification, a widely used 
machine learning algorithm. The goal of the study was to 
see if available characteristics of running compute jobs 
could be used to predict the software application that was 
being run. The Python API was used to fetch two months 
(January 1, 2023, through February 28, 2023) of job-level 
performance data from jobs running on the Bridges-2 
resource from Pittsburgh Supercomputing Center. Job-
level performance data is available through the SUPREMM 
realm. The ACCESS MMS team populates this realm by 
receiving node-level performance data from ACCESS 
Resource Providers who collect data by running software 
such as Performance Co-Pilot [37] or Prometheus [38] (or 
other software whose data can be exported into a common 
format) on their resources’ compute nodes. The ACCESS 
MMS team summarizes the node-level data into job-level 
data using the SUPReMM [39] software. The job-level 
data are then ingested into the SUPREMM realm, mak-
ing them available for analysis through the Data Analyt-
ics Framework and the portal. Centers running their own 
installations of Open XDMoD can also collect node-level 
performance data from their own compute nodes, run the 
SUPReMM software to summarize the job-level perfor-
mance data, and ingest the data into the SUPREMM realm 
of their installations of Open XDMoD.

In this case study, nine fields from the raw data were used 
as predictors:

• Wall Time: the wall-clock duration of the job,
• CPU User: the ratio of user CPU time to total CPU time 

for the cores that the job was assigned;
• Total memory used: the total memory used by the OS on 

all the nodes, including the page and buffer caches;
• Net Ib0 Rx: the average number of bytes received by the 

InfiniBand network interface on each node;
• Net Ib0 Tx: the same as Net Ib0 Rx but for bytes transmit-

ted instead of received;
• CPU User cov: the coefficient of variation for CPU User;
• Memory Used Cov: the coefficient of variation for Mem-

ory Used;
• Net Ib0 Rx Cov: the coefficient of variation for Net Ib0 

Rx; and
• Net Ib0 Tx Cov: the coefficient of variation for Net Ib0 

Tx.

We cleaned the data to remove jobs for which the applica-
tion data were unavailable, jobs for which the application 
had been categorized in a group of applications rather than 
as a single application (e.g., applications run via Python, 
R, or shell scripts), and jobs for which the application’s 
license prohibits performance reporting. We selected only 
jobs running the eight most common applications for the 
given time range. The data were split 90/10 into 40,134 
training rows and 4,460 test rows. We used the random 
forest algorithm from the Python scikit-learn library [40]. 
The model produced an out-of-bag accuracy of 97%. The 
top predictors based upon the variable importance were 
CPU User cov, CPU User, Wall Time, Net Ib0 Tx, Total 
memory used, and Net Ib0 Rx, with very low variable 
importance for Net Ib0 Rx Cov, Net Ib0 Tx Cov, and Mem-
ory Used Cov. The confusion matrix is shown in Fig. 4. 
The Jupyter notebook for this case study is provided in the 
xdmod-notebooks repository [29].

Conclusion

The initial implementation of the Data Analytics Frame-
work meets our goals of providing programmatic API 
access to the data in Open XDMoD, overcoming limita-
tions of the Open XDMoD portal, and enabling a wide 
variety of analyses and custom reporting that can make 
use of commonly available tools and environments. In this 
section we discuss the potential impact of the framework 
and planned future work.

Fig. 4  Confusion Matrix for the application classification case study. 
Applications were predicted with an accuracy of 97%



 SN Computer Science           (2024) 5:462   462  Page 10 of 14

SN Computer Science

Potential Impact

Some initial types of use cases that we can foresee for the 
Data Analytics Framework are (1) CI studies: the Data Ana-
lytics Framework provides information that can lend insight 
into which CI was used, how it was used, and the opportu-
nity to extrapolate what will be needed in the future; (2) User 
studies: how users interact with the CI, how the usage is 
evolving, and how the CI can be improved to better serve the 
users; (3) Return on Investment (ROI) studies: with funding 
and usage data in the Data Analytics Framework, there is the 
basis for ROI models and analyses. Of course, the depth and 
breath of the data available in the framework will provide 
many opportunities for a wide variety of bespoke reports, 
models, and analyses.

We have received feedback from users who anticipate 
the framework will be useful for generating reports of their 
centers’ usage of CI, in particular, when reports need to be 
generated in a way that is more flexible than can currently 
be provided by the Open XDMoD portal. Jupyter notebooks 
can also be adapted by CI centers for their support and out-
reach. For example, when engaging with users, support staff 
can provide a Jupyter notebook that highlights some of the 
Open XDMoD data pertinent to those particular users’ use 
of the CI resources provided by the center.

As previously described, our team is using the framework 
to report to the NSF on resource utilization of ACCESS-
allocated resources. As the team expands its monitoring and 
measurement of the national CI ecosystem, the Data Ana-
lytics Framework will be a key piece in our analysis of data 
from resources provided across the portfolio of NSF pro-
grams as well as individual centers. As an example, our team 
is developing models of cyberinfrastructure usage based on 
the data from these sources, which can potentially be used 
to categorize and predict resource usage patterns and needs.

Programmatic analysis of detailed job-level perfor-
mance data mapped to applications, users, disciplines, and 
resources allows for more comprehensive understanding of 
usage and efficiency patterns, which can help assess how 
well current CI systems are responding to researcher needs 
and to inform future CI procurement and investment at the 
local and national levels. For example, the framework can 
be used to analyze uptake and efficient utilization of new 
resources designed for artificial intelligence and machine 
learning applications, focusing in on particular disciplines 
as desired.

Future Work

We plan to continuously improve the Data Analytics Frame-
work and periodically release new versions. We currently 
have a list of changes that include new features and bug 
fixes; some of these are discussed in Sect. 5.2.1.

When new features are added to the API, we will cre-
ate new notebooks that document examples of using these 
features. We also plan to make new notebooks that demon-
strate different use cases of the framework. We encourage 
the community to contribute modifications and additional 
notebooks that we will curate via the xdmod-notebooks 
GitHub repository.

Future additions are planned for Open XDMoD that will 
expand the realms of cyberinfrastructure data collected and 
reported. We plan to expand the collection and reporting of 
networking data, storage data, and Open OnDemand [41] 
usage. As new resources are integrated into ACCESS, 
data on these resources will be available through the Open 
XDMoD portal and the Data Analytics Framework.

Improvements to the API

We plan to improve performance of queries to the data ware-
house, in particular queries for raw data. We are aware of 
certain improvements that we can make in how the queries 
are constructed, and we will further investigate other poten-
tial performance improvements.

We plan to increase the logging capabilities of the frame-
work to be able to better understand who is using it and for 
what purposes. This will help us better report on the impact 
of the framework and focus our improvements to it.

In version 1.0.0 of the framework, the filters for raw data 
are incomplete. The raw data queries for some realms are not 
properly joining the aggregate tables to the fact tables. Some 
raw data fields also have inconsistent labels between the fact 
and aggregate tables. In a future version, we will complete 
the filtering and clean up labels so they are consistent.

Cur ren t ly  bot h  t he  g e t _d a t a ( )  and 
get_raw_data() methods do not have a way to limit 
queries to a certain number of results. In particular for 
get_raw_data(), if only a certain number of rows are 
needed, it can have a noticeable effect on performance to 
request all the rows rather than limiting them to just the 
number needed. In a future version of the framework, we 
plan to add a limit parameter.

There are use cases in which multiple metrics are 
desired for the same realm, time range, dimension, and fil-
ters. Currently this is achieved by making multiple calls to 
get_data(). In a future version we will enable multiple 
metrics to be specified in a single call to get_data(), 
simplifying the code and possibly improving on query exe-
cution time.

Based on feedback received from initial users, we plan to 
make the methods have more consistent names. For example, 
there is currently an inconsistency in some method names 
starting with get_ and others starting with describe_. 
To make it easier to remember names of methods, we 
plan to add get_ aliases for the describe_ methods; 



SN Computer Science           (2024) 5:462  Page 11 of 14   462 

SN Computer Science

for example, get_dimensions() will be an alias for 
describe_dimensions().

There is also some interchangeable terminology used 
within the Open XDMoD portal, such as metrics being 
called “statistics” or dimensions being called “group bys,” 
so in a future version, we plan to make parameter names in 
the API be able to be specified using any of the interchange-
able terms.

Currently the API is documented through the example 
Jupyter notebooks and code comments in the source code 
of the xdmod-data package. The code comments can be 
converted to HTML using the Sphinx Python library [42], 
and we plan to use this library to produce detailed documen-
tation of the API that will be hosted on the Open XDMoD 
website.

We also plan to improve the automated test coverage of 
the code with the help of a library like coverage.py [43].

Hosted Jupyter Notebooks

One of the strengths of the Open XDMoD portal is that it 
is usable by anyone with a web browser without the need to 
install any specialized software. The initial version of the 
Data Analytics Framework does require local tool installa-
tion, however, to run the Jupyter notebooks. Even though we 
are using common tools that are widely used in the commu-
nity, this tool requirement results in a barrier to entry to use 
the framework. We plan to make it possible for users to run 
the framework through Jupyter notebooks directly in a web 
browser without needing to download software. We intend 
to enable this through existing production software such as 
JupyterHub [44] or Open OnDemand [41].

The Data Export tab on the Open XDMoD portal will 
eventually be deprecated in favor of the Data Analytics 
Framework. We also plan to work towards replacing the 
existing Report Generator tab with a Jupyter-based interface 
that uses the framework. We plan to include Jupyter note-
books as report templates and provide a periodic reporting 
capability such as what currently exists in the portal.

R Version

We plan to provide example Jupyter notebooks showing how 
to interact with the framework using the R language. We will 
do this starting with the R package called Reticulate [45], 
which allows embedding of Python code in R notebooks. 
Because the Python API obtains data and stores them in 
Pandas data frames, it will be straightforward to convert 
the data frames into R data frames. After prototyping this 
implementation, we will decide how we can provide more 
comprehensive R support.

Outreach

We are planning outreach activities to make the commu-
nity aware of how they can use the framework to analyze 
the data from their own centers as well as the historical 
data from resources allocated through TeraGrid, XSEDE, 
and ACCESS. Our team presented a tutorial showing how 
to use the framework at the PEARC ’23 conference. We 
are interested in holding additional tutorials and mini-
workshops for specific audiences. We would also like to 
make a video tutorial that can be updated as changes are 
made to the framework.

Appendix A Metrics in Open XDMoD

The default metrics available in each realm of Open 
XDMoD are listed in the following sections. Metrics 
in Open XDMoD can be grouped by time units of day, 
month, quarter, or year; and they can be grouped and fil-
tered by the dimensions in Appendix B.

A.1 Metrics in Jobs and Gateways realms

The Jobs and Gateways realms have metrics for the total 
and per-job counts of CPU hours, GPU hours, node hours, 
wait hours, and wall hours; numbers of jobs submitted, 
started, running, and ended; numbers of active users, prin-
cipal investigators, and resources; the number of GPUs 
per job; the CPU core hour utilization percentage; and 
numbers of CPU cores per job: total, minimum, maximum, 
average, normalized average, average weighted by CPU 
hours, and average weighted by GPU hours.

A.2 Metrics in SUPREMM realm

The SUPREMM (job-level performance) realm has met-
rics for the total and per-job numbers of wait hours, wall 
hours requested, and wall hours used; the wall time accu-
racy; the numbers of jobs submitted, started, running, 
and ended; the total numbers and average percentages 
weighted by node hour or GPU hour of CPU hours and 
GPU hours (allocated and utilized); the total numbers 
and average percentages weighted by core hour of CPU 
hours spent in system, user, and idle states; the averages 
per core weighted by core hour for the number of cycles 
per instruction, the ratio of clock ticks to L1D cache loads, 
the floating point operations per second, the core imbal-
ance, the memory, the maximum memory, and the memory 
bandwidth; and the averages weighted by node hour for 



 SN Computer Science           (2024) 5:462   462  Page 12 of 14

SN Computer Science

L1D load homogeneity, InfiniBand rate, mount point and 
block device read and write rate, and filesystem receive 
and transmit rate.

A.3 Metrics in Cloud realm

The Cloud realm has metrics for number of sessions started, 
active, and ended; total and per-session wall hours; total 
CPU hours; CPU core hour utilization percentage; and met-
rics weighted by wall hours for average cores, memory, and 
root volume storage reserved.

A.4 Metrics in Storage realm

The Storage realm has metrics for logical and physical usage 
in bytes; hard and soft quota thresholds; numbers of users 
and files; and logical quota utilization percentage.

A.5 Metrics in OnDemand realm

The OnDemand realm has metrics for the numbers of page 
loads, sessions (total and per user), active users, and Open 
OnDemand applications.

Appendix B Dimensions in Open XDMoD

Metrics in Open XDMoD can be grouped and filtered by the 
following dimensions.

B.1 Common dimensions

Dimensions common to all the realms include users, sys-
tem usernames, principal investigators, resources, resource 
types, service providers, and a three-level hierarchy that 
by default contains fields of science, parent sciences, and 
NSF directorates. This hierarchy can be customized by each 
center that runs an installation of Open XDMoD, e.g., to 
use decanal units, departments, and groups/accounts instead.

B.2 Additional dimensions in Jobs realm

The Jobs realm adds dimensions for job sizes, GPU counts, 
wall times, quality of service categories, and queues.

B.3 Additional dimensions in SUPREMM realm

The SUPREMM (job-level performance) realm adds many of 
the same dimensions as the Jobs realm as well as dimensions 
for applications; data sources; exit statuses; share modes; 
homogeneity and catastrophe ranks; and values of wall time 
accuracy, CPU and GPU utilization, cycles per instruction, 

peak memory usage, and InfiniBand and filesystem receive 
rates.

B.4 Additional dimensions in Cloud realm

The Cloud realm adds dimensions for virtual machine 
instance types, states, core sizes, memory sizes, submission 
venues, domains, and projects.

B.5 Additional dimension in Storage realm

The Storage realm adds a dimension for mount points.

B.6 Additional dimensions in Gateways realm

The Gateways realm adds dimensions for gateways and gate-
way acronyms.

B.7 Additional dimensions in OnDemand realm

The OnDemand realm adds dimensions for browsers, operat-
ing systems, geographical locations, and Open OnDemand 
applications and usernames.

Appendix C Additional metrics 
and dimensions in ACCESS‑hosted version 
of Open XDMoD

The ACCESS-hosted version of Open XDMoD adds addi-
tional metrics and dimensions beyond those available by 
default in Open XDMoD.

C.1 Metrics

The ACCESS-hosted version of Open XDMoD adds metrics 
for numbers of active allocations and institutions, allocation 
usage rates, and utilization statistics normalized across dif-
ferent resources.

C.2 Dimensions

The ACCESS-hosted version of Open XDMoD adds dimen-
sions for allocations, resources, and information about users’ 
and principal investigators’ institutions (name, state, and 
country).

Acknowledgements This material is based upon work supported by 
the National Science Foundation under Grant No. OAC 2137603. Nick 
Cruz assisted with initial prototyping of the Python and Jupyter imple-
mentations. The rest of the ACCESS MMS team (Matthew D. Jones, 
Abani K. Patra, Gregary Dean, Andrew Stoltman, Joshua Furlani, 
Jennifer Schopf, Shava Smallen, Vipin Chaudhary, Zahra Rahmani, 



SN Computer Science           (2024) 5:462  Page 13 of 14   462 

SN Computer Science

Stephen Harrell, and Matt Cawood) provided additional support, as 
did the other ACCESS teams.

Author Contributions Thomas R. Furlani, Robert L. DeLeon (RLD), 
and Joseph P. White (JPW) conceptualized the Data Analytics Frame-
work and provided supervision over its design and implementation. 
JPW wrote initial prototypes for the various pieces of the framework 
(Python API, example Jupyter notebooks, and new HTTP endpoints). 
Aaron Weeden (AW) completed these implementations and added auto-
mated testing, documentation, and software packaging via PyPI and 
GitHub. JPW designed and implemented the case study of ACCESS 
usage reporting. RLD designed and implemented the case study of 
random forest machine learning classification, with refinements from 
AW. Ryan Rathsam designed and implemented the API token authenti-
cation. Nikolay A. Simakov developed a prototype example R notebook 
that uses the Data Analytics Framework and the Reticulate library. 
Conner Saeli provided quality assurance testing and feedback.

Funding This material is based upon work supported by the National 
Science Foundation under Grant No. OAC 2137603.

Data availability The data used in the Case Studies section and Figs. 3–
4 came from ACCESS XDMoD (https://xdmod.access-ci.org/). The 
CI Usage Reporting case study used additional data: the list of NSF 
EPSCoR jurisdictions (https:// new. nsf. gov/ fundi ng/ initi atives/ epscor/ 
state- websi tes) and population data from the U.S. Census (“Annual 
Estimates of the Resident Population for the United States, Regions, 
States, District of Columbia and Puerto Rico: April 1, 2020 to July 
1, 2022 (NST-EST2022-POP)”—https:// www. census. gov/ data/ tables/ 
time- series/ demo/ popest/ 2020s- state- total. html# v2022).

Declarations 

Conflict of Interest On behalf of all authors, the corresponding author 
states that there is no Conflict of interest.

References

 1. Anderson G, Jankowski J, Boroush M. U.S. R &D Increased by 
$51 Billion in 2020 to $717 Billion; Estimate for 2021 Indicates 
Further Increase to $792 Billion. National Center for Science 
and Engineering Statistics (NCSES), National Science Founda-
tion. NSF 23-320. Available from: https:// ncses. nsf. gov/ pubs/ 
nsf23 320. Accessed 29 Sept 2023.

 2. Boerner TJ, Deems S, Furlani TR, Knuth SL, Towns J. 
ACCESS: Advancing Innovation: NSF’s Advanced Cyberin-
frastructure Coordination Ecosystem: Services & Support. In: 
Practice and Experience in Advanced Research Computing. 
PEARC ’23. New York, NY, USA: Association for Computing 
Machinery; 2023. p. 173–176. Available from: https:// doi. org/ 
10. 1145/ 35699 51. 35975 59.

 3. National Science  Foundation. Campus Cyberinfrastructure 
(CC*). https:// new. nsf. gov/ fundi ng/ oppor tunit ies/ campus- cyber 
infra struc ture- cc/. Accessed 20 Sept 2023.

 4. National Science Foundation. Cyberinfrastructure for Sustained 
Scientific Innovation (CSSI). https:// new. nsf. gov/ fundi ng/ oppor 
tunit ies/ cyber infra struc ture- susta ined- scien tific. Accessed 20 
Sept 2023.

 5. Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw 
A, et al. XSEDE: accelerating scientific discovery. Comput Sci 
Eng. 2014;16(5):62–74. https:// doi. org/ 10. 1109/ MCSE. 2014. 
80.

 6. Catlett C, Allcock WE, Andrews P, Aydt R, Bair R, Balac N, 
et al. Teragrid: Analysis of organization, system architecture, 
and middleware enabling new types of applications. IOS press; 
2008.

 7. Palmer JT, Gallo SM, Furlani TR, Jones MD, DeLeon RL, White 
JP, et al. Open XDMoD: a tool for the comprehensive manage-
ment of high-performance computing resources. Comput Sci Eng. 
2015;17(4):52–62. https:// doi. org/ 10. 1109/ MCSE. 2015. 68.

 8. Kimball R, Ross M. The Data Warehouse Toolkit: The Definitive 
Guide to Dimensional Modeling. 3rd ed. Wiley Publishing; 2013.

 9. Jones MD, White JP, Innus M, DeLeon RL, Simakov N, Palmer 
JT, et al. Workload Analysis of Blue Waters. ArXiv e-prints. 
2017;arXiv:1703.00924.

 10. Simakov NA, White JP, DeLeon RL, Gallo SM, Jones MD, 
Palmer JT, et al. A Workload Analysis of NSF’s Innovative HPC 
Resources Using XDMoD. ArXiv e-prints. arXiv: 1801. 04306 
(2018).

 11. White JP, DeLeon RL, Furlani TR, Gallo SM, Jones MD, Ghader-
sohi A, et al. An Analysis of Node Sharing on HPC Clusters Using 
XDMoD/TACC_Stats. In: Proceedings of the 2014 Annual Con-
ference on Extreme Science and Engineering Discovery Environ-
ment. XSEDE ’14. New York, NY, USA: ACM; 2014; p. 31:1–
31:8. Available from: https:// doi. org/ 10. 1145/ 26164 98. 26165 33.

 12. White JP, Innus M, Deleon RL, Jones MD, Furlani TR. Monitor-
ing and Analysis of Power Consumption on HPC Clusters Using 
XDMoD. In: Practice and Experience in Advanced Research 
Computing. PEARC ’20. New York, NY, USA: Association for 
Computing Machinery; 2020; p. 112–119. Available from: https:// 
doi. org/ 10. 1145/ 33117 90. 33966 24.

 13. Scrivner O, Singh G, Bouchard SE, Hutcheson SC, Fulton B, Link 
MR, et al. XD Metrics on demand value analytics: visualizing the 
impact of internal information technology investments on external 
funding, publications, and collaboration networks. Front Res Metr 
Anal. 2018. https:// doi. org/ 10. 3389/ frma. 2017. 00010.

 14. R Core Team. R: A language and environment for statistical com-
puting. Vienna, Austria. Available from: https:// www.R- proje ct. 
org/.

 15. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Vir-
tanen P, Cournapeau D, et al. Array programming with NumPy. 
Nature. 2020;585(7825):357–62. https:// doi. org/ 10. 1038/ 
s41586- 020- 2649-2.

 16. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh 
approach to numerical computing. SIAM Rev. 2017;59(1):65–98. 
https:// doi. org/ 10. 1137/ 14100 0671.

 17. RStudio Team. RStudio: Integrated Development Environment 
for R. Boston, MA. Available from: http:// www. rstud io. com/.

 18. Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, 
Frederic J, et al. Jupyter Notebooks - a publishing format for 
reproducible computational workflows. In: Loizides F, Schmidt 
B, editors., et al., Positioning and power in academic publishing: 
players, agents and agendas. IOS Press; 2016. p. 87–90.

 19. The MathWorks, Inc. MATLAB. https:// www. mathw orks. com/ 
produ cts/ matlab. html. Accessed 20 Sept 2023.

 20. McKinney W. Data structures for statistical computing in python. 
In: Stéfan van der Walt, Jarrod Millman, editors. Proceedings of 
the 9th Python in Science Conference; 2010. p. 56 – 61.

 21. Reitz K. Requests: HTTP for HumansTM . https:// reque sts. readt 
hedocs. io/ en/ latest/. Accessed 20 Sept 2023.

 22. Python Software  Foundation. Python package index - PyPI. 
https:// pypi. org/. Accessed 20 Sept 2023.

 23. Preston-Werner T. Semantic versioning. http:// semver. org/. 
Accessed 20 Sept 2023.

 24. Plotly. Plotly open source graphing library for python. https:// 
plotly. com/ python/. Accessed 20 Sept 2023.

 25. Highcharts. Highcharts. https:// highc harts. com/. Accessed 20 Sept 
2023.

https://new.nsf.gov/funding/initiatives/epscor/state-websites
https://new.nsf.gov/funding/initiatives/epscor/state-websites
https://www.census.gov/data/tables/time-series/demo/popest/2020s-state-total.html#v2022
https://www.census.gov/data/tables/time-series/demo/popest/2020s-state-total.html#v2022
https://ncses.nsf.gov/pubs/nsf23320
https://ncses.nsf.gov/pubs/nsf23320
https://doi.org/10.1145/3569951.3597559
https://doi.org/10.1145/3569951.3597559
https://new.nsf.gov/funding/opportunities/campus-cyberinfrastructure-cc/
https://new.nsf.gov/funding/opportunities/campus-cyberinfrastructure-cc/
https://new.nsf.gov/funding/opportunities/cyberinfrastructure-sustained-scientific
https://new.nsf.gov/funding/opportunities/cyberinfrastructure-sustained-scientific
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1109/MCSE.2015.68
http://arxiv.org/abs/1801.04306
https://doi.org/10.1145/2616498.2616533
https://doi.org/10.1145/3311790.3396624
https://doi.org/10.1145/3311790.3396624
https://doi.org/10.3389/frma.2017.00010
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1137/141000671
http://www.rstudio.com/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://requests.readthedocs.io/en/latest/
https://requests.readthedocs.io/en/latest/
https://pypi.org/
http://semver.org/
https://plotly.com/python/
https://plotly.com/python/
https://highcharts.com/


 SN Computer Science           (2024) 5:462   462  Page 14 of 14

SN Computer Science

 26. SmartBear Software. OpenAPI specification. https:// swagg er. io/ 
speci ficat ion/. Accessed 20 Sept 2023.

 27. University at Buffalo Center for Computational Research. Open 
XDMoD. GitHub. https:// github. com/ ubccr/ xdmod. Accessed 20 
Sept 2023.

 28. University at Buffalo Center for Computational Research. xdmod-
data. GitHub. https:// github. com/ ubccr/ xdmod- data. Accessed 20 
Sept 2023.

 29. University at Buffalo Center for Computational Research. xdmod-
notebooks. GitHub. https:// github. com/ ubccr/ xdmod- noteb ooks. 
Accessed 20 Sept 2023.

 30. Circle Internet Services, Inc. CircleCI. https:// circl eci. com/. 
Accessed 20 Sept 2023.

 31. Krekel H, pytest-dev team. pytest. https:// docs. pytest. org/ en/7. 
4.x/. Accessed 20 Sept 2023.

 32. Bergmann S. PHPUnit. https:// phpun it. de/. Accessed 20 Sept 
2023.

 33. Anaconda Inc. Anaconda. https:// www. anaco nda. com/. Accessed 
20 Sept 2023.

 34. Docker Inc. Docker. https:// www. docker. com/. Accessed 20 Sept 
2023.

 35. National Science Foundation. Established program to stimulate 
competitive research (EPSCoR). https:// new. nsf. gov/ fundi ng/ initi 
atives/ epscor. Accessed 20 Sept 2023.

 36. ACCESS Support. ACCESS knowledge base. https:// suppo rt. 
access- ci. org/ knowl edge- base. Accessed 20 Sept 2023.

 37. Silicon Graphics Inc, Aconex, and Red Hat. Performance co-pilot. 
https:// pcp. io/ index. html. Accessed 20 Sept 2023.

 38. Prometheus Authors. Prometheus. Accessed: 2023-09-29. Avail-
able from: https:// prome theus. io/.

 39. University at Buffalo Center  for Computational  Research. 
SUPReMM. GitHub. https:// github. com/ ubccr/ supre mm. 
Accessed 20 Sept 2023.

 40. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, 
Grisel O, et al. Scikit-learn: machine Learning in Python. J Mach 
Learn Res. 2011;12:2825–30.

 41. Hudak D, Johnson D, Chalker A, Nicklas J, Franz E, Dockendorf 
T, et al. Open OnDemand: a web-based client portal for HPC 
centers. J Open Source Softw. 2018;3(25):622. https:// doi. org/ 10. 
21105/ joss. 00622.

 42. The Sphinx developers. Sphinx. https:// www. sphinx- doc. org/ en/ 
master/. Accessed 20 Sept 2023.

 43. Batchelder N. coverage.py. https:// cover age. readt hedocs. io/ en/7. 
2.7/. Accessed 20 Sept 2023.

 44. Project Jupyter. JupyterHub. https:// jupyt er. org/ hub. Accessed 20 
Sept 2023.

 45. Kalinowski T, Ushey K, Allaire J, RStudio, Tang Y. R Interface 
to python. https:// rstud io. github. io/ retic ulate/. Accessed 20 Sept 
2023.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://swagger.io/specification/
https://swagger.io/specification/
https://github.com/ubccr/xdmod
https://github.com/ubccr/xdmod-data
https://github.com/ubccr/xdmod-notebooks
https://circleci.com/
https://docs.pytest.org/en/7.4.x/
https://docs.pytest.org/en/7.4.x/
https://phpunit.de/
https://www.anaconda.com/
https://www.docker.com/
https://new.nsf.gov/funding/initiatives/epscor
https://new.nsf.gov/funding/initiatives/epscor
https://support.access-ci.org/knowledge-base
https://support.access-ci.org/knowledge-base
https://pcp.io/index.html
https://prometheus.io/
https://github.com/ubccr/supremm
https://doi.org/10.21105/joss.00622
https://doi.org/10.21105/joss.00622
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/
https://coverage.readthedocs.io/en/7.2.7/
https://coverage.readthedocs.io/en/7.2.7/
https://jupyter.org/hub
https://rstudio.github.io/reticulate/

	The Data Analytics Framework for XDMoD
	Abstract
	Introduction
	Motivation
	Design and Implementation
	Design Goals
	Python Development
	Jupyter Notebook Development
	Open XDMoD Portal Development
	API Token Authentication
	New HTTP Endpoints for Raw Data

	Version Control, Testing, and Documentation
	Version 1.0.0 of the Framework

	Case Studies
	CI Usage Reporting
	Machine Learning Classification

	Conclusion
	Potential Impact
	Future Work
	Improvements to the API
	Hosted Jupyter Notebooks
	R Version
	Outreach


	Appendix A Metrics in Open XDMoD
	A.1 Metrics in Jobs and Gateways realms
	A.2 Metrics in SUPREMM realm
	A.3 Metrics in Cloud realm
	A.4 Metrics in Storage realm
	A.5 Metrics in OnDemand realm

	Appendix B Dimensions in Open XDMoD
	B.1 Common dimensions
	B.2 Additional dimensions in Jobs realm
	B.3 Additional dimensions in SUPREMM realm
	B.4 Additional dimensions in Cloud realm
	B.5 Additional dimension in Storage realm
	B.6 Additional dimensions in Gateways realm
	B.7 Additional dimensions in OnDemand realm

	Appendix C Additional metrics and dimensions in ACCESS-hosted version of Open XDMoD
	C.1 Metrics
	C.2 Dimensions

	Acknowledgements 
	References


